
Name: Toby Hooper Centre number: 64220

Candidate number: 8564

1 of 64

Finding the fastest route to travel between

London Underground stations

Analysis

Identification of problem

Overview:

I am going to make a system that allows users to find the route between two London Underground

stations. It will allow passengers on London’s Tube to enter start and destination stations and it will then

display the route with the shortest travel time between them.

Other information will also be displayed such as the time of the next train leaving, the number of

changes, and the price of the journey.

My system will also allow admins, for example TfL staff, to login and change the current status of a train

line if it is under maintenance. My system will then redirect passengers, creating the best new route

available.

Solving a problem:

This system solves the problem faced by many non-Londoners and tourists who are unfamiliar with the

layout of the Tube and don’t know how to get from A to B in the quickest possible time.

A knock-on effect of this problem is that people may have less time to experience London and view sites

and are instead stuck on the not too pleasant Tube. Others who have tight schedules may be late for

meetings and important engagements.

With my system users will be able to find the fastest route for their journey, allowing them to save

precious time. The user will also be given important information such as the time of the next train and

the platform they should go to.

Area of interest:

I have chosen this problem as I love the idea of solving mathematical problems (like traversing a graph)

in real life. I have also used the Tube many times and have been left wondering if I could have gone on a

more efficient route, in what appears to be a spaghetti-like layout of Tube lines.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

2 of 64

Target user:

My target users will be people who are unfamiliar with the Tube as they may be tourists, foreign

businessman, or just from outside London. These people may find it daunting to look at the confusing

Tube map, yet would also like to know the quickest route to their destination. This system I am creating

will abstract the complicated process of finding the quickest route across London for the user.

My application will also be useful when some lines are not available, as passengers can be shown new

routes that can get them to their destination.

As the problem with the normal Tube map is its complexity, my system must be simplistic and easy to

use so it can be a much-needed solution to people’s traveling problems.

System constraints

My system must be simple and easy to use. This is because my users may have no ICT knowledge so they

would be unable to navigate a complex system. Instead the UI must be simple, and it must be clear what

each UI element does.

My users may also be in a rush if they need to catch a train as quickly as possible. This makes it

important that my system is simple, so that a new user can find it easy to navigate quickly. The route

must also be calculated quickly, and live information used to give the arrival times of Tube trains.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

3 of 64

Research Techniques

Survey

Below I have asked questions to my potential users about the current system and what they would like

to see in a new system:

I have asked this question to check there would be a userbase for my system. From the response, I can

clearly see that people are interested in this system to help them navigate the Tube.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

4 of 64

Possible feature – finds the quickest route between stations

This question asks the importance of the main feature of my system.

With an average of 8.8 I can see that it is very important that people know the quickest route on the

Tube. It shows that people may be in a rush when using the Tube, need to reach a destination quickly or

would rather not be on the busy Underground longer than needed. This also shows that there is a

userbase for my system.

Implementation

To implement this, I will use a pathfinding algorithm as well as a database storing all stations and station

connections.

Possible feature – route with minimum changes

This result shows that everyone would like the option of selecting a route with minimum

changes, due to this making journeys easier to navigate for the user, with less walking and train

changes required.

 Implementation

I will be able to implement this as a checkbox that the user can choose to select, if they what to

know the route with minimum train changes. I will also have to alter my path finding algorithm

to prioritise routes that remain on the same lines and have few changes.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

5 of 64

Possible feature – train arrival times

All users answered saying they would like to see when the next train is due.

I also think this would be a useful feature as it lets the user know if they should rush to catch an

earlier train, or just take their time knowing that their train is not arriving right away. This allows

people to spend less time waiting on platforms, as well as preventing people from running for

trains they can’t catch.

Implementation

I will be able to add this feature by calling the TfL API which can return details of train arrivals

for specific stations. I will do this by sending a URL request to TfL’s REST API containing the

station’s unique ID. From this request a JSON response will be returned, including details of

arriving train times for that station.

I will display the next few train arrival times, rather than just one, so the user has a choice of

trains to catch if they miss the first one.

I will also add a checkbox which allows the user to choose if they want to view live train times,

as they may not need to travel right away, and calling the API will take relatively longer than just

finding the path using the local database.

Possible feature – showing the number of train changes

This is a feature I plan to include, as I want to display to the user the most important

information about their route. I think this is important information as the user must be ready to

change trains so that they don’t miss their stop.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

6 of 64

Implementation

To show a train change, I will tell the user the change of line, as well as telling the user the

station at which the change occurs.

Possible feature – showing the cost of the journey

Here someone has indicated the importance of a feature that displays the cost of a journey, as

the user will likely want to know how much they are paying.

Implementation

To do this I will need to create a database for the stations in each zone, and the prices to travel

between different zones. I will then find the range of zones on the route, using the stations on

the route, and my database. Using another table, I will find the price information for the

different zones travelled through.

Possible feature – comparing cost of travel

Although I think it would be useful to show the price of the journey, I don’t think there is any

need to compare journey costs or find the route with the lowest price. This is because most

journeys are a fixed price whatever route is taken, as the user is only traveling on TfL’s

Underground and has no other options that could be cheaper while still taking a route on the

Underground.

Possible feature – map of route

Some people may like the idea of a route displayed graphically if they are interested in the exact

route the train is taking around London. However, this is not a mandatory feature for helping

the average user get from A to B, as the user is not driving the train and instead only needs to

know when to get on and off. Therefore, I think a map would just add unnecessary information

to the system, when my main goal is to make the system as simple and easy to use as possible.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

7 of 64

Possible feature – simple UI

When asked what they would not like in the system, many said they don’t what the UI to be

overcomplicated, and instead want a simplistic system that is easy to use.

Implementation

To do this I will keep my UI simple, with only a few GUI elements so that the important fields are

obvious, and so the user can receive their desired route as quickly and easily as possible. To

ensure I do this I will not have a login system for users, as this is unnecessary and adds nothing

to the main purpose of the system. Instead, the first thing the user should see when opening the

application is an option to enter two stations, for a route between them to be returned.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

8 of 64

The result of this question shows again the importance of a simplistic system that is easy to use. This

means my UI should not be cluttered with information, and it should be clear to the user what they

need to do to find their route.

Possible feature – route redirection

Most people thought it was a good idea for routes to be redirected if lines are under

maintenance. I think this would be a useful feature of the system because users will always be

directed on the best route despite any interruptions on the Underground.

 Implementation

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

9 of 64

To do this I plan to have admin accounts, allowing staff to login and update line statuses in order

to redirect traffic onto other lines. My path finding algorithm will then avoid any closed lines

when finding the fastest route.

A few different people mentioned Trainline as a similar system. I will look more closely at this system,

and at its pros and cons, as it is similar to my planned system, but for the overground network instead of

the London Underground.

Possible feature – showing the cost of the journey

Here a user has pointed out that Google Maps does not tell you the price of a journey and thinks

this would be a useful feature. I would therefore like to add this feature as it would be very

helpful to know the price of your journey.

I have talked about the implementation of this above when someone mentioned it as a feature

they would like to see added.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

10 of 64

Survey Features - Conclusion

Features to include

• Route with minimum changes

• Display live train arrival times

• Display number of train changes

• Showing the price of the journey

• Admins can close lines for the route to be
redirected

• Checkbox for the user to choose if they
would like to view live train times for
their route

Things not to include

• Comparing journey prices

• A cluttered and overcomplicated UI

• Map of route

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

11 of 64

Similar systems currently available

TfL journey planner https://tfl.gov.uk/plan-a-journey/

The TfL journey planner takes the input of your start and end Underground station, and then finds the

quickest route between them. This requires a path finding algorithm, which would most likely be some

form of Dijkstra’s algorithm. To perform this algorithm the information of each node (i.e. station) and

edge (i.e. travel time for each connection) must be stored. This data is likely stored in a normalized

database.

The TfL planner returns a route, along with each change and the time for each section.

https://tfl.gov.uk/plan-a-journey/

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

12 of 64

The journey planner also returns the time until when the next train is due. This information can be

found using the TfL open API which can return the arrival times of future trains, along with platform

information and other data.

In my project I will include Dijkstra’s algorithm as my path finding solution, similar to how TfL may do

their route finding. I will also include references to the TfL API so I can also display when the next train is

due, as I think it is a very important feature that people will find helpful.

One thing I would like to avoid after viewing TfL’s journey planner is displaying too much information at

once, so that the important information is obscured. I would like my software to be simplistic so that a

user can easily find a journey without any prior knowledge of the system, even if they have little ICT

skills.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

13 of 64

Good

• Tells you when the next train is due

• Displays information on train changes

Bad

• Displays a lot of information at once

What I will include in my solution:

• Simple UI as this make it easier to use, it is also what people wanted in my survey

• Getting the time of the next train using the TfL API

• I will use Dijkstra's algorithm to find a route between the stations, I will then display details of
the journey such as the number of stops and changes.

Trainline journey planner http://thetrainline.com/

Trainline’s journey planner is used to plan routes for train journeys across Europe, taking inputs of

starting and ending station, and then displaying a ticket price.

http://thetrainline.com/

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

14 of 64

When typing in a location, Trainline auto fills the word making it quick and easy to search for

destinations with long names. I like this feature as it makes place names that are longer or more difficult

to spell quicker to find, saving users time. For Trainline to have this system a database must be stored

with all names of stations. In my project I will need to store all names of London Underground Stations,

which can be done in the same normalized database that my information for Dijkstra’s algorithm is

using.

Good

• Autocomplete makes searching for a
station quick and easy

Bad

• If there is not a direct route the system
sometimes displays an error rather than
finding a route with train changes

What I will include in my solution:

• I will include autocomplete for the fields where the user must type station names

Google Maps https://www.google.co.uk/maps/dir/

Google Maps includes a path finding solution along with information about delays and closures to help

keep traffic flowing well and giving people the quickest route in all circumstances.

https://www.google.co.uk/maps/dir/

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

15 of 64

I would like to include a system like this, which redirects passengers onto another route on the

Underground if there are closures to a line. I will do this by allowing admins to sign in and update line

statuses.

Google Maps also displays a visual route, making it easy for users to navigate their journey. However, I

will not include a map like this for my system for the Tube, as the only important thing is that the user

can catch the correct train, so the exact path can be abstracted from the user.

Good

• Include information on road closures, so

routes can be redirected

• Simple UI

Bad

• Does not display journey prices

What I will include in my solution:

• I will include the prices of journeys which will be displayed to the user once their route has
been found

• I will redirect routes if lines are closed. I will do this by allowing admins to set each line’s
status, for example, to open, or closed due to maintenance. I will need to make this a secure
feature so that only admins can say that lines are closed.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

16 of 64

Other relevant details

Tube map

Above is the Tube map that I will be basing my project on. I will store the station and line information in

a database.

As the Tube map is very complex, I will develop my route-finding application in stages, starting with just

a few train lines, in order to build up the complexity and test as I go.

Research on Dijkstra’s Algorithm

Dijkstra’s Algorithm finds the shortest path between two nodes. I will use a priority queue in my

implementation.

Dijkstra’s Algorithm

1. Mark all nodes as unvisited

2. Assign every node a time to be reached of infinity, apart from the starting node which should be

assigned a time of 0.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

17 of 64

3. Add the starting node to the priority queue.

4. Consider all unvisited neighbouring nodes of the first node in the queue. Update each

neighbour's time to be reached, if the time to reach the station at the front on the queue + the

connection time to this neighbour is less than the current time to reach that neighbour.

5. Insert all updated neighbours into the priority queue, based on their time to be reached.

6. Remove the node from the start of the queue marking it as visited.

7. Repeat steps 4 to 6 until the destination node reaches the front of the priority queue.

8. To find the shortest path trace backwards from the final node.

Overview of evidence gathered

Firstly, I have discovered that many of my potential users would like a simple UI that is easy to use. I

have also learnt from my survey that users would like to see the price of their journey, and how many

train changes are needed. People would also like to have the option to select the route with minimum

train changes.

After looking at similar systems and seeing what features they include, I would like to access the TfL API

to display the train times for the user's journey. This is also a feature that 100% of people voted for in

my survey.

Another feature that was voted for, and is used in systems such as Google Maps, is redirecting journeys

when lines are under maintenance or closed. To do this I will have admin accounts, allowing admins to

login to my system and change the status of a line (e.g. from open to closed). This will also be a useful

feature for my testing of the graph traversal algorithm.

To get some of these features to work (such as route redirects, and finding a route with minimum train

changes), I will need to alter Dijkstra’s Algorithm to suit my needs.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

18 of 64

Flowchart

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

19 of 64

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

20 of 64

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

21 of 64

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

22 of 64

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

23 of 64

Data flow Diagram

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

24 of 64

Storage Processes

S1 Stations table – includes all information
about each station.
Fields:

• Station ID

• Station name

• NaPTAN ID (ID used to access the
TfL API)

• Station Zone (1-9)

P1 Finds a route between the two stations
stated by the user, using Dijkstra’s
Algorithm.

S2 Connections table – includes details on all
connections between stations.
Fields:

• Station IDs in the connection

• Travel time of the connection

• The train line the connection is on

P2 Calculates the price of the journey using
the price information for the zones
travelled through.

S3 Admin account details – includes details
of each admin account
Fields:

• Hashed password

• Username

P3 Allows admins to login to their admin
account by entering their username and
password. The username is compared
with the username in the database, and
the password is hashed and then
compared with the hashed password in
the database.

S4 Line status table – includes details on each
train line, including the status of the line
Fields:

• Line ID

• Line name

• Line status ID

P4 Creates a new admin account with the
username and password the admin has
entered and adds it to the account
database.

S5 Zone pricing information table – includes
each price for every possible zone
combination (e.g. 1-3, 2-5, 7-7)
Fields:

• Zone ID 1 (any zone 1 to 9)

• Zone ID 2 (any zone 1 to 9)

• Price (for this zone combination)

P5 Updates the line status with the new
status entered by the admin.

 P6 Updates the zone price with the new
price entered by the admin.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

25 of 64

Data Sources and Destinations

Input Process Storage Output

- Start and end Station
- Minimum train
changes checkbox

Find route between
stations

- Time for journey
- Number of changes

Stations on route that
has been calculated

Calculate price of
journey

Price of journey

Starting station Access TfL API via a URL
request

Time until next train
leaves

Username and
password

Validate username and
password, then login to
admin account

Username and
password

- Check password is a
sensible length, then
hash it
- Create new admin
account

Store username and
hashed password in
database

New Zone prices Edit Zone pricing Update Zone pricing
information in
database

New line status (e.g.
non-operational)

Edit line status Update line status
database

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

26 of 64

Data Volumes

The system should be able to have 100 users with the ability for this to increase over time. This number
could increase to over 2,000 users in six months. This should not be a problem for data storage as users
will not have accounts.

There should be the ability for at least 10 admin accounts. This number should be able to double after 2
years.

GUI ideas

Overview of GUI

For my GUI I have decided to use only a few colours to keep a simple look, with red against a light blue

background to make important parts stand out. I have also used negative space to make sure my GUI

doesn't look cluttered. I have chosen to do this because many people in my survey wanted to see a

simplistic UI.

Main Menu Panel

This is the first panel the user will see and where they can type in the stations that they want to find a

route between. There is also a checkbox so the user can choose if they want a route with minimum train

changes. I have also included a button for ‘Admin Access’, to allow admins to login and then carry out

admin tasks such as changing zone prices.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

27 of 64

Journey Results Information

Here all information about the user's journey will be displayed, such as their journey time and when the

next train leaves.

Admin – Login

Here admins can login to their account. There is no option to create an account to prevent just anyone

making an account. Instead, other admins can create new admin accounts from their existing account.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

28 of 64

Admin - Menu

This menu is displayed to admins when they login. It can be used to access different admin tasks such as

editing zone pricing. It can also be used to add new admin accounts so that new admins can login to the

admin menu.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

29 of 64

Admin – Edit Zone pricing

Below is an example of a table admins can use to edit details in the system. This table allows admins to

edit specific zone prices, while another table displaying line details will allow admins to edit line

statuses. The apply button must be pressed to commit the changes to the local database.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

30 of 64

Complex Algorithms

• Graph/Tree Traversal – I will use Dijkstra's algorithm as my path finding solution in order to find

routes between stations, with the shortest travel time

• Queue operations – I will use a priority queue in my implementation of Dijkstra's algorithm to

hold the next nodes to be checked, in order of their time to be reached

• Calling parameterised Web service APIs and parsing JSON/XML to service a complex client-

server mode – I will access the TfL API so that I can display train arrival times

• Hashing – I will use a SHA256 hash to securely store admin passwords in my database

• Complex data model in database (e.g. several interlinked tables) – I will include several

interlinked tables that store data about stations, station connections, pricing and lines. These

tables will be used by my path finding algorithm, as well as to display the journey price and

other information.

• Cross-table SQL – I will use cross-table SQL to get information from my tables about zone pricing

• Parameterised SQL – I will use prepared parameterised SQL statements when inserting admin

accounts into my database. I will also use them when checking whether an admin account exists

for a username and password entered.

• Aggregate SQL functions – I will use the MAX function when assigning a unique ID to a new

admin account

• Object-orientated programming model – I will create node and edge objects, containing

information about the Tube map, which will be used by my path finding solution

• Merge Sort – Used to sort stations into alphabetical order when the program starts, so binary

search can be used on them

• Recursion - Used in my merge sort and in my implementation of Dijkstra's algorithm

• Regular expression - I will use a regular expression to check the format of zone prices entered by

admins.

• Binary Search - I will use a binary search to search for a station name entered by the user, in an

array of stations.

• Reading from files – I will read from CSV files to import data into my database. I will also be

reading an image file to be used as the application’s icon

Any other relevant details

Connecting to TfL API

URL request example: https://api.tfl.gov.uk/StopPoint/940GZZLUCWR/arrivals

This returns a JSON response with information about all trains arriving soon for the station specified.

The station is specified by its NaPTAN ID in the URL, for example, Canada Water = 940GZZLUCWR.

https://api.tfl.gov.uk/StopPoint/940GZZLUCWR/arrivals
https://api.tfl.gov.uk/StopPoint/940GZZLUCWR/arrivals

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

31 of 64

Objectives

User Input

1. The user can input a starting station and destination station.

2. There is autocomplete when the user types in the station names.

3. A binary search is used to search an array of station names for a station name entered by the

user.

4. The user can choose whether they would like the quickest route or the route with minimum

train changes, via a checkbox.

5. The user can choose whether they would like to receive live train times, via a checkbox.

6. An error is displayed if an invalid station is entered.

7. An error is displayed if the journey is not possible as a line is closed.

8. An error is displayed if the start and end station entered are the same station.

Pathfinding
9. Dijkstra’s algorithm is used to find the shortest travel time between stations and the route of

that journey.

10. Dijkstra’s algorithm uses a priority queue to hold indexes of nodes Objects, ordered by their

time to be reached.

11. My implementation of Dijkstra’s algorithm should use recursion.

12. An adjacency list is used to store indexes of all edge objects connected to each node object

13. My pathfinding algorithm redirects routes if a line’s status is set to ‘Closed’.

14. If the ‘Minimum Changes’ checkbox has been selected, my pathfinding algorithm redirects

routes if there is an alternative route with less train changes, even if the journey time is made

longer.

15. Objects are used to store the nodes and edges of the graph representing the tube map. With

nodes representing stations and edges representing train lines.

Output to user
16. The system returns the cost of the journey.

17. The system returns the total estimated travel time for the journey.

18. The system returns the estimated travel time for each section between train changes in the

journey.

19. The system returns the names of stations where each line change occurs.

20. The system shows the names and colours of the lines being travelled on in the journey.

21. Using the TfL API, the system returns the live arrival times of the next three trains for each stage

of the user's journey.

22. Using the TfL API, the system returns the platforms that the user’s trains leave from.

23. An error message is displayed to the user if the API can’t be accessed.

24. If the ‘Live Train Changes’ Checkbox was not selected, the API is not called, and the live train

times and platform information are not displayed.

25. The route details are returned in less than 200ms, when the API is not accessed for live train

times.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

32 of 64

Admin Login
26. An Admin can login to the admin menu if they enter a valid username and password.

27. An error is displayed if the username and/or password entered is invalid.

28. The username and password entered are check against the records in the database, using a

parameterised prepared SQL statement.

Admin Menu
29. Admins are displayed a menu from which they have three different options: edit zone pricing,

edit lines, and create new admin accounts.

New admin account
30. Admins can create new admin accounts for fellow admins.

31. A username entered for a new admin account must be unique.

32. The username must be <= 20 characters.

33. The username must not be blank

34. The password must be between 8 and 20 characters (inclusive)

35. Password and Confirming Password must be the same when creating a new admin account

36. If any of the conditions for the username and password are not met, an error message is

displayed.

37. The new admin account is inserted into the database using a parameterised prepared SQL

statement.

38. Admins passwords are hashed using a SHA256 hash.

39. Use the aggregate SQL ‘MAX’ function when assigning a unique ID to a new admin account.

Edit Zone pricing
40. Admins can update the pricing for the different Underground zones by editing fields in an

interactable table.

41. A cross-table SQL statement is used to fetch all zone pricing information from the database.

42. Admins are only able to enter prices with a valid price format, checked by a regular expression.

43. Admins have an ‘Apply Changes’ button to commit their changes to the local database.

Edit Lines
44. Admins can set each line’s status to open or closed using drop down lists.

45. The changes to line statuses are updated in the local database when the admin presses the

‘Apply Changes’ button.

Other
46. Send a URL request to the TfL API, and parse to JSON.

47. Use a normalised database for all the details of the system.

48. Merge sort stations in alphabetical order based on their UNICODE values, when the program

begins.

49. My merge sort should use recursion.

50. I will read from CSV files in order to enter all station and connection information into my

database from these CSV datasets.

51. I will read an image file to set it as the icon image of my application.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

33 of 64

Design
Structure Chart

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

34 of 64

DFD of proposed system
My DFD here is very similar to my DFD in my analysis section. I have made a few alterations and have

included the new diagram below. The changes I have made are:

• Updated the names of all storages to show the table names in my database.

• Added the tblStatus storage, S6.

• Added the tblZone storage, S7.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

35 of 64

This table includes information on the two new storages. The other storages and processes are

explained under my DFD in the design section.

Storage

S6 tblStatus – includes records to represent different statuses that lines can have. Status ID
is referenced as a foreign key in tblLine.
Fields:

• Status ID

• Status Description

• isOpen (boolean value representing whether a status allows a line to be

travelled on)

S7 tblZone – stores a zone name for each zone ID. Zone ID is referenced as a foreign key in

tblZonePricing.

Fields:

• Zone ID

• Zone Name

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

36 of 64

Class diagram

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

37 of 64

Description of Record Structure
- I’m going to make a local database in NetBeans.

- I’m going to use CSV files to import data into my databases.

- I will also be storing a PNG image file for the application icon.

I will store my database and other files in separate folders within my project folder.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

38 of 64

Entity-relationship diagram

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

39 of 64

Data Dictionary

tblStation

Item Name Example Data Type Size Validation?
stationID 157 Integer 10

NB: 10 is the size

assigned to an

Integer data type

N/A

stationName London Bridge Varchar 30
NB: the longest
station name is
‘Crossharbour &
London Arena’

N/A

naptanID 940GZZLULNB Varchar 11
NB: NaPTAN IDs
are 11 characters
or less

N/A

zoneID 1 Integer 10 N/A

tblLine

Item Name Example Data Type Size Validation?

lineID 3 Integer 10 N/A

lineName Circle Line Varchar 25
NB: the longest
line name is
‘Hammersmith &
City Line’

N/A

hexColour FFE02B Varchar 6 N/A

statusID 1 Integer 10 N/A

tblConnections

Item Name Example Data Type Size Validation?

connectionID 26 Integer 10 N/A

stationID1 82 Integer 10 N/A

stationID2 139 Integer 10 N/A
lineID 7 Integer 10 N/A

travelTime 2 Integer 10 N/A

tblStatus

Item Name Example Data Type Size Validation?

statusID 1 Integer 10 N/A

statusDescription Open Varchar 50 N/A

isOpen TRUE Boolean 1 N/A

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

40 of 64

tblZone

Item Name Example Data Type Size Validation?

zoneID 1 Integer 10 N/A

zoneName Zone 1 Varchar 7 N/A

tblZonePricing

Item Name Example Data Type Size Validation?

pricingID 1 Integer 10 N/A

zoneID1 1 Integer 10 N/A

zoneID2 1 Integer 10 N/A

price 2.4 Double 52
NB: 52 is the size
assigned by
default to a
Double data type

The format of the

price is checked

using a regular

expression.

Error message:

“Price must be in

correct format”

tblAdminDetails

Item Name Example Data Type Size Validation?

adminID 1 Integer 10 N/A

username User1 Varchar 20 Presence check

Error message:

“Username must

be entered”

Length must be <=

20.

Error message:

“Maximum

Username length

is 20 characters”

Duplicate check

Error message:

“Username

already exists”

hashedPassword 83878c9117133
8902e0fe0fb97a
8c47a

Varchar 64
NB: a SHA256
hash is 64
Characers long

N/A

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

41 of 64

File Organisation and Processing
tblStation(stationID(10), stationName(30), naptanID(11), zoneID(10))

• There will be 302 station records in this table = (10+30+11+10)*302 = 18422 bytes

• I have not planned to implement a system to add new stations

tblLine(lineID(10), lineName(25), hexColour(6), statusID(10))

• There will be 14 records in this table = (10+25+6+10)*14 = 714 bytes

• I have not planned to implement a system to add new lines

tblConnections(connectionID(10), stationID1(10), stationID2(10), lineID(10), travelTime(10))

• There will be 406 records in this table = (10+10+10+10+10)*406 = 20300 bytes

• New connections will not be added as I will not be adding new lines or stations.

tblStatus(statusID(10), statusDescription(50), isOpen(1))

• There will be 2 possible status records in this table, open and closed = (10+50+1)*2 = 122 bytes

• There will not be a feature to add new statuses. However, this may change in the future and the

number of records may increase to 6 over 2 years = (10+50+1)*6 = 366 bytes

tblZone(zoneID(10), zoneName(7))

• There will be 9 zone records in this table = (10+7)*9 = 153 bytes

• This number of zones will not need to increase

tblZonePricing(pricingID(10), zoneID1(10), zoneID2(10), price(52))

• There will be 45 records in this table = (10+10+10+52)*45 = 3690 bytes

• This number of records will not need to increase as the number of zones will not change

tblAdminDetails(adminID(10), username(20), hashedPassword(256))

• There will be 10 admin accounts in this table = (10+20+64)*10 = 940 bytes

• Over 2 years the number of admins may increase by 100% = 940*2 = 1880 bytes

Total Data size

18422 + 714 + 20300 + 366 + 153 + 3690 + 1880 = 45525 bytes ≈ 45.5Kb

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

42 of 64

Adding Records to my Database
In order to represent the Tube map I will need to enter all 302 station records and 406 connection

records into my database. Whereas with other tables it will be quickest to enter the data manually when

I first create the system, with these two tables I plan to automate the process.

To do this I will read the CSV files that I am taking my data from, using each line to create the records in

my tables. I found these CSV files in a GitHub repository containing almost all the information I need to

map out the Tube graph.

However, the ‘naptanID’ field needed for each station record is not included in the CSV files. To get

these IDs I will need to call the Transport for London API with the name of each station. Each JSON

response will include the station’s NaPTAN ID.

GitHub datasets: https://github.com/nicola/tubemaps/tree/master/datasets

https://github.com/nicola/tubemaps/tree/master/datasets

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

43 of 64

User Interface Design
The aesthetic of my GUI design has stayed the same as in my Analysis section. Now I have included

screenshots of all my panels, with labels describing the functions of each element.

Main Menu Panel

When the ‘Find Route’ button is pressed the two stations entered are validated. If they are not valid an

error message will be displayed, otherwise the route between these stations is calculated. An error

message is displayed if:

• One or both stations have been left blank

• One or both stations do not exist

• The stations entered are the same

• A route cannot be found due to a closed train line.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

44 of 64

Journey Results Information

Here all information about a route is displayed. If the API cannot be accessed at the current time, an

error message will display instead of the live train times, with the rest of the information being shown as

normal. Live train times will also not be shown if the ‘Live Train Times’ checkbox was not selected on the

previous panel.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

45 of 64

Admin – Login

Admins can use this panel to login to their admin account. If the username and password entered match

a record in the admin details table, they will enter the admin menu. Otherwise, an error message will be

displayed.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

46 of 64

Admin – Menu

The admin menu allows admins to access all three admin tasks: edit zone pricing, edit lines statuses, and

creating a new admin account.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

47 of 64

Admin – Edit Zone pricing

This panel allows admins to make changes to zone prices using an interactive table. Changes are not

updated in the database unless the admin commits their changes using the ‘Apply Changes’ button.

Changes to these zone prices will change the prices displayed to users when they view route

information.

The price fields in the table will use a regular expression to check each value entered is in the correct

price format. A pound sign, £, will be accepted, but will not be compulsory.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

48 of 64

Admin – Edit Lines

The Edit Lines panel is where admins can update the statuses of lines. All lines are displayed, and an

admin can change each one's status using the drop-down lists. Changes will not be saved to the

database unless the ‘Apply Changes’ button is pressed.

Closing lines means they can no longer be travelled on. My path finding algorithm will avoid these lines,

redirecting user’s routes. If a journey can no longer be completed due to a line closure, an error will be

displayed to the user.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

49 of 64

Admin – New Admin Account

Here is where new admin accounts are created. This panel must not be available to any ordinary user, so

is accessed from the admin menu.

For an account be created, the information entered must be valid:

• The username must be unique to all existing usernames

• The username must be <= 20 characters

• The username must not be blank

• The password must be between 8 and 20 characters (inclusive)

• The password must be the same as the confirming password.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

50 of 64

Algorithms

Dijkstra's algorithm
I am using this algorithm as my path finding solution. It will allow me to get the fastest route between

two stations and return it to the user. I have chosen to use this algorithm because it allows me to find

the fastest route on a node and edge graph. This means I can use stations as nodes and tube lines as

edges to make up the London Underground map as a graph that can be traversed by the algorithm.

Why not A*

A* pathfinding builds on Dijkstra’s algorithm but also considers straight line distances between each

node and the end node, prioritising nodes that are the quickest to reach (like in standard Dijkstra’s) but

also the nodes that head in the correct general direction of the end node. This form of pathfinding is

quicker than Dijkstra’s as it checks less nodes before finding the shortest path.

However, I have chosen to use the standard Dijkstra’s algorithm rather than A* pathfinding because I

don’t have the real-world distance information between each pair of stations, which is needed for A*.

Another reason is that real world distances do not necessarily relate to travel time on the Tube, because

Tube lines are not direct, and have different numbers of stops and changes. The London Underground

network is also not so big that there would be a significant performance boost from using an A*

pathfinding algorithm.

Code:

package tuberoutefinder;

import java.util.ArrayList;

public class DijkstrasAlgorithm {

 private final ArrayList<GraphNode> graphNodeArray; // all nodes in the graph

 private final ArrayList<GraphEdge> graphEdgeArray; // all edges in the graph

 private final int[][] adjacencyList;

 private final GraphNode startNode;

 private GraphNode endNode;

 private final boolean minLineChanges;

 private final int timeToChangeLines; // time to change from one line to another in mins

 public DijkstrasAlgorithm(ArrayList<GraphNode> graphNodeArray, ArrayList<GraphEdge> graphEdgeArray,

 int[][] adjacencyList, GraphNode startNode, GraphNode endNode, boolean minLineChanges) {

 this.graphNodeArray = new ArrayList<>(graphNodeArray);

 this.graphEdgeArray = new ArrayList<>(graphEdgeArray);

 this.adjacencyList = adjacencyList;

 this.startNode = startNode;

 this.endNode = endNode;

 this.minLineChanges = minLineChanges;

 this.timeToChangeLines = 5;

 }

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

51 of 64

 public ArrayList<GraphNode> getRoute() {

 // set timeFromStartStation, of starting station, to 0

 graphNodeArray.get(startNode.getIndexInGraphNodeArray()).setTimeFromStartStation(0);

 // create an arrayList acting as the priority queue of graphNodeArray, ordered in terms of

timeFromStartStation of each node

 ArrayList<Integer> queueOfGraphNodeIndexes = new ArrayList<>();

 queueOfGraphNodeIndexes.add(startNode.getIndexInGraphNodeArray());

 // recursively runs until the time to get to the end node has been confirmed

 recursiveAlgorithum(endNode.getIndexInGraphNodeArray(), queueOfGraphNodeIndexes, adjacencyList);

 // back tracks from the end GraphNode (using previousNode of each GraphNode) to the starting GraphNode

 // then returns an array of GraphNodes on the route

 return backTrackToFindRoute(endNode.getIndexInGraphNodeArray());

 }

 private void recursiveAlgorithum(int endNodeID, ArrayList<Integer> queueOfGraphNodeIndexes, int[][]

adjacencyList) {

 // add all neighbours, of the node currently at the front of the queue, into the queue

 queueOfGraphNodeIndexes = updateQueue(queueOfGraphNodeIndexes, adjacencyList);

 // remove the node currently at the front of the queue, from the queue

 graphNodeArray.get((queueOfGraphNodeIndexes.get(0))).setVisited(true);

 while (graphNodeArray.get(queueOfGraphNodeIndexes.get(0)).isVisited()) {

 queueOfGraphNodeIndexes.remove(0);

 }

 // if the end node is not first in queue, carry on recursion

 if (graphNodeArray.get(queueOfGraphNodeIndexes.get(0)).getStationID() !=

(graphNodeArray.get(endNodeID).getStationID())) {

 recursiveAlgorithum(endNodeID, queueOfGraphNodeIndexes, adjacencyList);

 }

 // the end node may be at a different platform to the end node at the start

 endNode = graphNodeArray.get(queueOfGraphNodeIndexes.get(0));

 }

 private ArrayList<Integer> updateQueue(ArrayList<Integer> queueOfGraphNodeIndexes, int[][] adjacencyList) {

 // gets the index of the node currently first in the priority queue (the index of the node in graphNodeArray)

 int nodeIndex = queueOfGraphNodeIndexes.get(0);

 // loops through all the edges of the first node in the priority queue

 int edgeNum = 0;

 while (edgeNum < adjacencyList[0].length && adjacencyList[nodeIndex][edgeNum] != -1) { // -1 means null

and therefore no more edges

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

52 of 64

 // gets the details of the edge being checked

 GraphEdge currentEdge = graphEdgeArray.get(adjacencyList[nodeIndex][edgeNum]);

 // gets the index of the node in currentEdge connected to the node currently first in the priority queue

 int connectedNodeIndex;

 if (currentEdge.getNode1().getIndexInGraphNodeArray() == queueOfGraphNodeIndexes.get(0)) {

 connectedNodeIndex = currentEdge.getNode2().getIndexInGraphNodeArray();

 } else {

 connectedNodeIndex = currentEdge.getNode1().getIndexInGraphNodeArray();

 }

 if (!graphNodeArray.get(connectedNodeIndex).isVisited()) { // check to see if connected node has already

been visited (had its travel time confirmed)

 // time currently in 'timeFromStartStation' in neighbour node:

 int previouseTime = graphNodeArray.get(connectedNodeIndex).getTimeFromStartStation();

 // time to neighbour node through current node being checked:

 int possibleNewTime = currentEdge.getTravelTime() +

graphNodeArray.get(nodeIndex).getTimeFromStartStation();

 // if the current node is the start, travel time between line changes should take 0 time

 if (nodeIndex == startNode.getIndexInGraphNodeArray() && currentEdge.getLine().getLineID() == 0) { //

lineID 0 is a line change

 possibleNewTime = 0;

 } else if (currentEdge.getLine().getLineID() == 0 && minLineChanges) {

 // time for a line chnage is set to a huge value to deter route finder if

 // minChanges check box has been ticked

 possibleNewTime = graphNodeArray.get(nodeIndex).getTimeFromStartStation() + 50;

 } else if (currentEdge.getLine().getLineID() == 0) {

 // time to travel a line change is set

 possibleNewTime = graphNodeArray.get(nodeIndex).getTimeFromStartStation() + timeToChangeLines;

 }

 if (possibleNewTime < previouseTime) {

 // update TimeFromStartStation of node

 graphNodeArray.get(connectedNodeIndex).setTimeFromStartStation(possibleNewTime);

 // records the previous node that gave this node its time

 graphNodeArray.get(connectedNodeIndex).setPreviousNode(graphNodeArray.get(nodeIndex));

 // records the line that gave this that gave this node its time

 graphNodeArray.get(connectedNodeIndex).setPreviousLine(currentEdge.getLine());

 // insert node into queue (do not need to remove it from the queue if it is already in the queue

 // as when duplicates get to the front they will just be removed)

 queueOfGraphNodeIndexes =

insertIntoQueue(graphNodeArray.get(connectedNodeIndex).getIndexInGraphNodeArray(),

queueOfGraphNodeIndexes);

 }

 }

 edgeNum++;

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

53 of 64

 }

 return queueOfGraphNodeIndexes;

 }

 // uses a binary search to insert the new node in the priority queue based on its timeFromStartStation

 private ArrayList<Integer> insertIntoQueue(int nodeIndex, ArrayList<Integer> queueOfGraphNodeIndexes) {

 int left = 0; // this pointer marks the index of the left most value (smallest value) that hasn't been checked

 int right = queueOfGraphNodeIndexes.size() - 1; // this pointer marks the index of the right most value

(largest) that hasn't been checked

 int mid = queueOfGraphNodeIndexes.size() / 2; // this pointer marks the mid point of the left and right

pointers, and is the index of the next value to be compared

 // continues until position for nodeIndex to be inserted has been found

 while (left <= right) {

 if (graphNodeArray.get(nodeIndex).getTimeFromStartStation() <

graphNodeArray.get(queueOfGraphNodeIndexes.get(mid)).getTimeFromStartStation()) {

 right = mid - 1;

 } else if (graphNodeArray.get(nodeIndex).getTimeFromStartStation() >

graphNodeArray.get(queueOfGraphNodeIndexes.get(mid)).getTimeFromStartStation()) {

 left = mid + 1;

 } else {

 break;

 }

 mid = (left + right) / 2;

 }

 queueOfGraphNodeIndexes.add(mid + 1, nodeIndex);

 return queueOfGraphNodeIndexes;

 }

 // prints out route

 private ArrayList<GraphNode> backTrackToFindRoute(int endNodeIndex) {

 ArrayList<GraphNode> routeArrayList = new ArrayList<>();

 GraphNode graphNode = graphNodeArray.get(endNodeIndex);

 while (graphNode.getPreviousNode() != null) {

 routeArrayList.add(0, graphNode);

 System.out.print(graphNode.getName());

 System.out.print(" <-- ");

 graphNode = graphNode.getPreviousNode();

 }

 System.out.println(graphNode.getName());

 routeArrayList.add(0, graphNode);

 return routeArrayList;

 }

}

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

54 of 64

Autocomplete

I have created autocomplete for my text fields so that when a user types in a station name they don’t

need to spend time typing out the whole name. This makes finding a route a quicker process. It also

means the user doesn't need to know the correct spelling, just the first few letters.

Code:

private int charsTyped = 0;

private int length = 0;

static String[] stationNames;

private void autoComplete(JTextField textField) {

 charsTyped++;

 // 'charsTyped' is reset if the length of the unselected text has been reduced

 try {

 if ((textField.getText().length() - textField.getSelectedText().length()) <= length) {

 charsTyped = 0;

 }

 } catch (Exception e) {

 if ((textField.getText().length()) <= length) {

 charsTyped = 0;

 }

 }

 // local variables used to apply autocomplete

 String text = textField.getText();

 String newText = "";

 // checks all station names for a match with the text entered

 for (String stationName: stationNames) {

 if (text.length() < stationName.length() && text.equalsIgnoreCase(stationName.substring(0, text.length())) &&

charsTyped> 0) {

 newText = stationName;

 }

 }

 // apply autocomplete

 if (!newText.equals("")) {

 textField.setText(newText); // updates textfield to autocompleted text

 textField.select(text.length(), newText.length()); // highlight autocompleted text

 }

 // Sets 'length' = to the length of the unselected text in the textfield:

 try {

 length = textField.getText().length() - textField.getSelectedText().length();

 } catch (Exception e) {

 length = textField.getText().length();

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

55 of 64

 }

}

Priority Queue

I will use a priority queue in my Dijkstra's algorithm to hold the indexes of the next nodes to be searched

by the path finding algorithm. They will be ordered by the travel time it takes to reach each node. This

leads to the destination node receiving its travel time only when it is certain it is the quickest possible

path.

Code:

The priority queue is an ArrayList called ‘queueOfGraphNodeIndexes’. All the code for it is included previously in

the algorithm section on Dijkstra’s algorithm.

Calling parameterised Web service API and parsing JSON

I’m calling an API provided by Transport for London because it will be useful for the users to know the

live arrival times of the trains they are looking to catch. My API calls are parameterised with the

‘NaPTAN’ unique key of each station. This makes sure that the response returns information about train

arrivals for the specific station that the user will be leaving from.

Below is some code for a test project I have made to print out all train arrival times for a particular

station, along with the platform each train is leaving from. This test program prints out this information

in the console, but when I add this feature to my project, it will display on the ‘Route Details’ Panel.

Code:

package tflapi_test;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import java.text.DateFormat;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.Date;

import org.json.JSONArray;

import org.json.JSONException;

import org.json.JSONObject;

public class TfLAPI_test {

 public static void main(String[] args) {

 long timeWhenFindRoutePressed = System.currentTimeMillis();

 jsonURL("940GZZLUCWR"); // this naptanID represents Canada Water Station

 System.out.println("");

 System.out.println("Time taken for request: " + (System.currentTimeMillis() - timeWhenFindRoutePressed) + "

ms");

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

56 of 64

 }

 public static void jsonURL(String naptanID) {

 try {

 // url give json response with data about the trains arriving at the station of the given ID

 String url = "https://api.tfl.gov.uk/StopPoint/" + naptanID + "/arrivals";

 URL URLobj = new URL(url);

 HttpURLConnection con = (HttpURLConnection) URLobj.openConnection(); // defult connection is GET

 int responseCode = con.getResponseCode();

 System.out.println("\nSending 'GET' request to URL : " + url);

 System.out.println("Response Code : " + responseCode); // returns response code so I know what the error

is (e.g. 200, 404..)

 StringBuilder response;

 try (BufferedReader in = new BufferedReader(

 new InputStreamReader(con.getInputStream()))) {

 String inputLine;

 response = new StringBuilder(); // StringBuilder is used to store every line received in the URL request

 while ((inputLine = in.readLine()) != null) {

 response.append(inputLine); // each line in the response is added to the response variable

 }

 }

 // JSONArray to store the different JSONObjects from the response, there are different objects for each train

 JSONArray JSONtrainObjectArray = new JSONArray(response.toString());

 // Loops through all JSONObjects from the URL request

 for (int i = 0; i < JSONtrainObjectArray.length(); i++) {

 System.out.println("");

 JSONObject Jobject = new JSONObject(JSONtrainObjectArray.get(i).toString());

 //System.out.println(Jobject.toString()); // prints the whole Object

 String arriavlTime = Jobject.getString("expectedArrival"); // gets the value stored under 'expectedArrival'

in the JSONObject (this is the arrival time, e.g. 2020-05-24T14:34:43Z)

 String platform = Jobject.getString("platformName"); // gets the value stored under 'platformName' in

the JSONObject (this is the platform name and direction, e.g. Westbound - Platform 1)

 // System.out.println(arriavlTime);

 System.out.println(platform);

 dueTime(arriavlTime.replace("T", " ").replace("Z", ""));

 }

 } catch (IOException | JSONException e) {

 System.out.println("ERROR:" + e);

 }

 }

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

57 of 64

 static void dueTime(String arrivalTime) {

 DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss");

 Date date = new Date();

 try {

 date = dateFormat.parse(arrivalTime);

 } catch (ParseException e) {

 System.out.println(e);

 }

 // calculates due time in mins

 long dueMins = (date.getTime() - System.currentTimeMillis()) / 60000;

 // if time zone is currently GMT rather than BST, times will apper 60 mins to big:

 if (dueMins >= 60) {

 dueMins -= 60;

 }

 System.out.println("Due: " + dueMins + " mins");

 }

}

Hashing

I plan to use a SHA256 hash to store admin passwords securely in my database. I am using SHA256 as it

is one of the most secure hash functions and it is more secure than using MD5 or SHA1. Below is the

code I am using to implement this hash function.

Code:

 // SHA-256 hash on password

 private String getSHA256hash(String password) {

 String hashedPassword = null;

 try {

 MessageDigest messageDigest = MessageDigest.getInstance("SHA-256"); // select SHA-256 hash

 byte[] digest = messageDigest.digest(password.getBytes()); // apply hash to password

 BigInteger bigInt = new BigInteger(1, digest); // convert byte array 'digest'

 hashedPassword = bigInt.toString(16); // to a hashed string

 } catch (NoSuchAlgorithmException e) {

 System.out.println(e);

 }

 return hashedPassword;

 }

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

58 of 64

Cross-table SQL
I plan to use cross-table SQL when fetching zone pricing data from my database. I will use a JOIN to link

the tblZonePricing table with the tblZone table. When fetching this zone pricing information. I will also

need to use a UNION to get two records of zone details from tblZone for every record in tblZonePricing.

SQL statement I will use to get zone pricing information:

SELECT * FROM APP.tblZonePricing

JOIN APP.tblZone ON APP.tblZonePricing.zoneID1 = APP.tblZone.zoneID

UNION

SELECT * FROM APP.tblZonePricing

JOIN APP.tblZone ON APP.tblZonePricing.zoneID2 = APP.tblZone.zoneID

Parameterised SQL

I will use parameterised prepared SQL statements when inserting admin accounts into my database. I

will also use them when checking whether an admin account exists for the username and password

entered. In both cases I am using user-entered data in an SQL statement so I am using parameterised

prepared statements to prevent SQL injection attacks.

Admins also have the ability to update zone pricing information and line statuses in the database.

However, neither of these cases require prepared statements because the pricing information is

validated via a regular expression and the line statuses are edited with drop-down lists so there is no

user entered variables.

Below is the code I will use to insert new admin accounts and to check if an admin account exists, both

using parameterised prepared SQL statements.

Code to insert new admin account:

 // called by adminMethods to add new admin account

 public void insertAdminAccount(String username, String hashedPassword) {

 int newAdminID = getNewAdminID(); // get unique primary key

 connectToDatabase(); // connect to database

 try {

 // prepared statement without its parameters

 String sql = "INSERT INTO APP.tblAdminDetails (adminID, username, hashedPassword) VALUES (?,?,?)";

 // assign values in prepared statement

 PreparedStatement preparedStatement = con.prepareStatement(sql);

 preparedStatement.setInt(1, newAdminID);

 preparedStatement.setString(2, username);

 preparedStatement.setString(3, hashedPassword);

 preparedStatement.executeUpdate(); // inserts the new record

 } catch (SQLException e) {

 System.out.println(e);

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

59 of 64

 }

 housekeeping(); // disconnect from database

 }

Code to check if admin account exits:

 // called to validate login information

 public boolean adminAccountExists(String username, String hashedPassword) {

 connectToDatabase();

 try {

 // prepared statement without its parameters

 String sql = "SELECT adminID FROM APP.tblAdminDetails WHERE username =? AND hashedPassword =?";

 // assign username and password in prepared statement

 PreparedStatement preparedStatement = con.prepareStatement(sql);

 preparedStatement.setString(1, username);

 preparedStatement.setString(2, hashedPassword);

 // execute command

 rs = preparedStatement.executeQuery();

 while (rs.next()) {

 housekeeping();

 return true; // if account exists in database, return true

 }

 } catch (SQLException e) {

 System.out.println(e);

 }

 housekeeping();

 return false; // if account does not exist, return false

 }

Aggregate SQL functions
I will use the MAX function so that I am able to assign a unique primary key to a new admin account.

Using this method means there will never be any duplicate IDs.

Below is the code I will use to create a new unique primary key (adminID) for a new admin account.

Code:

 // generates a unique primary key for a new admin account

 // by returning the number one greater than the current highest adminID

 private int getNewAdminID() {

 connectToDatabase();

 int newAdminID = 1;

 try {

 String SQL = "SELECT MAX(adminID) as maxID FROM APP.tblAdminDetails"; // the number returned is to be

named maxID

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

60 of 64

 rs = stmt.executeQuery(SQL);

 rs.next();

 newAdminID = rs.getInt("maxID") + 1; // the new primary key must be one greater than the current maxID

 } catch (SQLException e) {

 System.out.println(e);

 }

 housekeeping();

 return newAdminID;

 }

Merge Sort
I am using a merge sort to sort station objects into alphabetical order based on the UNICODE value of

their name. I am sorting the stations so that I can use a binary search to find a station entered by the

user. This sorting allows the path finding to be quicker as I don’t then need to use the slower linear

search method.

I have chosen to use merge sort as it is much faster than other sorting algorithms such as insertion sort.

Below is the code I will use to merge sort the stations.

Code:

public void mergeSort(ArrayList<Station> stationArray, int leftIndex, int rightIndex) {

 if (leftIndex == rightIndex) {

 return; // returns if the sub array between leftIndex and rightIndex is just one element

 }

 int mid = (leftIndex + rightIndex) / 2;

 // sort the first and the second half

 mergeSort(stationArray, leftIndex, mid);

 mergeSort(stationArray, mid + 1, rightIndex);

 // merge these sorted halves together

 merge(stationArray, leftIndex, mid, rightIndex);

 }

 // merge two sorted arrays

 public void merge(ArrayList<Station> stationArray, int leftIndex, int mid, int rightIndex) {

 ArrayList<Station> tempStationArray = new ArrayList<>(); // the two halves will be merged into this temporary

array

 int firstHalfIndex = leftIndex; // index of next element to be considered in the first half

 int secondHalfIndex = mid + 1; // index of next element to be considered in the second half

 // while firstHalfIndex and secondHalfIndex haven't reached the end, add the alphabetically first into

tempStationArray

 while (firstHalfIndex <= mid && secondHalfIndex <= rightIndex) {

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

61 of 64

 // compares the two strings

 int checkNum =

stationArray.get(firstHalfIndex).getName().compareToIgnoreCase(stationArray.get(secondHalfIndex).getName());

 if (checkNum < 0) {

 tempStationArray.add(stationArray.get(firstHalfIndex));

 firstHalfIndex++;

 } else {

 tempStationArray.add(stationArray.get(secondHalfIndex));

 secondHalfIndex++;

 }

 } // while ends when all of one half has been added to tempStationArray

 // add any remaining items from the first half into tempStationArray

 while (firstHalfIndex <= mid) {

 tempStationArray.add(stationArray.get(firstHalfIndex));

 firstHalfIndex++;

 }

 // add any remaining items from the second half into tempStationArray

 while (secondHalfIndex <= rightIndex) {

 tempStationArray.add(stationArray.get(secondHalfIndex));

 secondHalfIndex++;

 }

 // override the non-merged stations (leftIndex to rightIndex) in stationArray with the new merged stations in

tempStationArray

 for (int j = 0; j < tempStationArray.size(); j++) {

 stationArray.set(leftIndex + j,tempStationArray.get(j));

 }

 }

Recursion
I have used recursion in my merge sort, and in my implementation of Dijkstra's algorithm. I have used

recursion in both cases as it is a more elegant solution than iteration making it easy to view my code and

understand what is happening.

Code:

The code for both these implementations of recursion are shown previously in my algorithm sections about Merge

sort and Dijkstra's algorithm respectively.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

62 of 64

Binary Search
I am using a binary search to search for a station name entered by the user in an array of stations. I am

using this search algorithm as it is much faster than linear search.

Code:

 // binary search - used by GUI to confirm that the station name entered exists

 public GraphNode binarySearchForNode(String stationName) {

 int left = 0; // this pointer marks the index of the left most value (towards A) that hasn't been checked

 int right = graphNodeArray.size() - 1; // this pointer marks the index of the right most value (towards Z) that

hasn't been checked

 int mid = graphNodeArray.size() / 2; // this pointer marks the mid point of the left and right pointers, and is

the index of the next value to be compared

 // contines until the the stationName is found, or it is found to not exist

 while (left <= right) {

 String currentStationName = graphNodeArray.get(mid).getName();

 // compareToIgnoreCase() returns 0 if strings are equal, negative number if the second

 // stirng appears after the first in UNICODE, and positive if it appears before

 int checkNum = currentStationName.compareToIgnoreCase(stationName);

 if (checkNum > 0) {

 right = mid - 1;

 } else if (checkNum < 0) {

 left = mid + 1;

 } else {

 return graphNodeArray.get(mid);

 }

 mid = (left + right) / 2;

 }

 return null;

 }

Regular expression
I am using a regular expression to check that the prices entered by admins are in the correct format. I

am using a regular expression for validation as it can validate the strings in very few lines of code.

Regular expression I have created for checking price format:

The method for where this regular expression is used is below. TRUE is returned if the string is valid, and

FALSE if not valid.

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

63 of 64

Code:

 public boolean isPriceCorrectFormat(String price) {

 // reg ex is created

 Pattern pattern = Pattern.compile("(^£?\\d*\\.?\\d{1,2}$)|(^£?\\d+\\.?\\d{0,2}$)");

 Matcher matcher = pattern.matcher(price); // compares price to reg ex

 boolean matchFound = matcher.find();

 return matchFound; // returns true if valid, false if not

 }

Reading from files
I am reading from CSV files so I can import my station and connection information into my database

tables rather than typing it all in manually. I need to use CSV files because the datasets I am using from

GitHub are in this format. I am also reading an image file so I can set the icon image of my application,

instead of having the default java logo.

Below is my code for reading the image file and then reading one of the CSV files.

Code for reading image file:

 // set icon of GUI

 Image icon = Toolkit.getDefaultToolkit().getImage("Files\\\\Images\\\\UndergroundIcon.png");

 setIconImage(icon);

Code for reading CSV file:

 try {

 // the CSV file

 String file = "Files\\\\CSVdata\\\\Stations.txt";

 // Create filereader object

 FileReader filereader = new FileReader(file);

 // create csvReader object

 CSVReader csvReader = new CSVReader(filereader);

 String[] nextRecord;

 // reading data line by line

 while ((nextRecord = csvReader.readNext()) != null) {

 // here can look at all fields in this line

 // nextRecord contains all fields in this record/line

 }

 } catch (Exception e) {

 System.out.println("ERROR : " + e);

 }

Name: Toby Hooper Centre number: 64220

Candidate number: 8564

64 of 64

Libraries and APIs
Imports
com.opencsv.CSVReader;

java.awt.CardLayout;
ijava.awt.Color;
java.awt.Component;
java.awt.Dimension;
java.awt.Image;
java.awt.Toolkit;

java.io.BufferedReader;
java.io.File;
java.io.FileReader;
java.io.InputStreamReader;
java.io.IOException;

java.net.HttpURLConnection;
java.net.URL;

java.math.BigInteger

java.security.MessageDigest;
java.security.NoSuchAlgorithmException;

java.sql.Connection;
java.sql.DriverManager;
java.sql.PreparedStatement;
java.sql.ResultSet;
java.sql.SQLException;
java.sql.Statement;
java.sql.Time;

java.text.DateFormat;
java.text.ParseException;
java.text.SimpleDateFormat;

java.util.ArrayList;
java.util.Arrays;
java.util.concurrent.TimeUnit;
java.util.Date;
java.util.regex.Matcher;
java.util.regex.Pattern;
java.util.Scanner;

javax.swing.JLabel;
javax.swing.JPanel;
javax.swing.JTextField;

Java Libraries
Derbclient.jar

• This will be used when creating and using
my database

java-json.jar

• This includes libraries that allow me to
parse my API responses from plain text
into JSON objects. This allows specific
fields of data to be easily accessed

opencsv-4.1.jar

• Used to read data from CSV files. I will
need to do this when first setting up my
database

commons-lang3-3.11.jar

• This library is also needed along with
opencsv to parse data from CSV files

APIs

I will use the Transport for London API to get
train arrival times.

I will also use this API to get station NaPTAN IDs
when I first enter them into my database.

org.json.JSONArray;
org.json.JSONException;
org.json.JSONObject;

